Teaching the Historical Perspective —

Should We or Shouldn’t We?

Somewhere in a course on methods of teaching or on curriculum, undergraduate students preparing to become technology teachers invariably study a unit on the history of their profession. Books that were used with industrial arts majors years ago (e.g., Andrews & Ericson, 1976) and newer volumes (Martin, 1995), are used to give students a clear, usually undisputed lineage of the field. They may examine apprenticeships, the Sloyd system, manual arts, and industrial arts.

There is much to be gained by a historical analysis. Mistakes of the past can be avoided in the future. Revisiting the past also keeps us from losing sight of our successes over the years. A historical perspective gives us a sense of pride and helps to cement the comradeship we feel.

Scholars in the field have stimulated our thinking, reminded us of our past, and asked us to question our assumptions by their historical analyses (Foster, 1995; Petrina and Volk, 1995; Herschbach, 1996). However, I suggest that such a study may be counterproductive for technology education. By training new teachers in the history of the field, are technology education professors unknowingly indoctrinating them into the outdated systems of the past?

As our field evolves, there are many with one foot still caught in their industrial arts heritage. We no longer teach in industrial arts shops, but in newer technology education labs, though many still have the classic woodworking and metalworking equipment. The curriculum we cover is steeped in our industrial arts and manual arts heritage.

Courses like manufacturing and construction do indeed cover important areas of production technology, but they are narrow in their scope. Under the heading of “production technology” many nonindustrial technologies should also be included. By the time someone wakes up, showers, brushes his or her teeth and puts a sandwich in a lunch box, this person has been directly involved with a host of production technologies that are conveniently overlooked in technology courses. Why are these and other areas overlooked? Possibly, it is because we view technology education from its historical perspective. Zuga (1994) suggested that “industrial technology may be authentic to the traditions of the profession, but it is not authentic to the needs of all chil-
dren and our evolving society” (p. 82).
Liedtke (1995) raised the questions:

Is technology education still entrenched in the myths and sagas from industrial arts? When you think of technology education do you consider our pioneers to be those who developed and organized industrial arts or do you reflect upon the leaders of the 1970s and 1980s who envisioned a very different discipline and profession? (p. 10)

I am reminded of a new technology teacher who began her first teaching job in a classroom that had no equipment for the first two months. In those first two months, however, her students were guided through problem-solving activities, technology-awareness games, simple experiments, and even philosophical discussions about technology. Once the equipment arrived, she found herself teaching primarily about how to use the equipment, and her students spent more time sanding than thinking. In looking back, she remarked that she did more technology education in those first two months than she did in the rest of the school year. Was it the equipment and the heritage of teaching about equipment that corrupted her original and successful style?

Theorists, in finding new directions for technology education, look at the evolution of the field. Those in charge of physical facilities look at ways of converting outdated shops into new technology labs. Maybe we should start from scratch, temporarily assuming that technology education has no heritage and that there is no equipment in the room. How would that change what we teach and how we teach it?

What would happen if undergraduate technology education majors were taught that they are in a new field, one that has a heritage in the sciences, industry, in the home, and in many other areas? What if examinations of undergraduates did not include specific reference tracing the lineage of the field through industrial arts. Would our field move forward better?

If a kindergarten teacher asks students to draw a flower with crayons, many different flowers are drawn. If the teacher first has each student copy the flower the teacher has drawn, there may well be many more of the same old flowers.

References

Jim Flowers, Ph.D., is an assistant professor in the department of industry and technology at Ball State University in Muncie, IN.